Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

نویسندگان

  • Mark J Lara
  • Hélène Genet
  • Anthony D McGuire
  • Eugénie S Euskirchen
  • Yujin Zhang
  • Dana R N Brown
  • Mark T Jorgenson
  • Vladimir Romanovsky
  • Amy Breen
  • William R Bolton
چکیده

Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6 . Boreal Forest

The boreal forest biome occupies 13 x I06km1. It comprises approximately 25% of the world's forest land (Olson et al. 1983; Apps et al. 1993) and includes 2.6 x 106km1 of peatlands (Gorham 1991). Changes in the extent or functioning of the boreal forest wuld substantially modify global climate through (1) release of its large stocks of soil carbon (Post et al. Boreal forests have also been impl...

متن کامل

Modeling the Impact of Black Spruce on the Fire Regime of Alaskan Boreal Forest

In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of int...

متن کامل

Continental divide: Predicting climate-mediated fragmentation and biodiversity loss in the boreal forest

Climate change threatens natural landscapes through shifting distribution and abundance of species and attendant change in the structure and function of ecosystems. However, it remains unclear how climate-mediated variation in species' environmental niche space may lead to large-scale fragmentation of species distributions, altered meta-population dynamics and gene flow, and disrupted ecosystem...

متن کامل

Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

Climate change has increased the area affected by forest fires each year in boreal North America1,2. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses3–5. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we ...

متن کامل

Vulnerability of Northern Forests and Forestry: The Disturbing Influence of Climate Change

Focusing primarily on boreal forest ecosystems, this talk examines the role of stand-replacing disturbances in a changing climate and poses the hypotheses that: 1) Present and near-term future carbon budgets at the forest scale are constrained by the historical and present disturbance regime; 2) Changes in these regimes due to global change has a larger near-term impact on boreal forest carbon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Global change biology

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2016